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eigenvalues, each corresponding to a propagating imped-

ance mode of the multiconductor line. [2]
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A Wtrct- E4@vafent circuits of nonuniform coupled transmission fines

whose self and mutuaf characteristic admittance distributions obey biuomiaf

form are presented. Telegrapher’s equations of these nonuniform coupled

transmission lines csrr be solved exactly using Bessel functions of fractional

order. By decomposing the chain matrix, it is shown that equivalent circuits

of these nonuniform coupled transmission lines consist of cascade connec-

tions of lumped reactance elemenk+ uncoupled uniform transmission lines

and ideaf transformers.

I. INTRODUCTION

c OUPLED TRANSMISSION lines are very im-

portant in microwave network theory. They are used

extensively in all types of microwave components: filters,

couplers, matching sections, and equalizers. Uniform cou-

pled transmission lines have been described by many

authors [1 ]– [ 15], and it is well known that equivalent

representations of coupled transmission lines are very sig-

nificant techniques in the analysis and synthesis. Nonurti-

form coupled transmission lines show good transmission

responses and may also be important in microwave net-

work theory. In general, the analysis of nonuniform cou-

pled transmission lines becomes hard work because of

difficulty of finding exact network functions. The analysis

of particular nonuniform coupled transmission lines, for
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instance, exponential or hyperbolic tapered coupled trans-

mission lines, have been reported [16], [17], but useful

equivalent representations have not been obtained.
In this paper, we investigate equivalent circuits of non-

uniform coupled transmission lines whose self and mutual

characteristic admittance distributions obey binomial form.

First, it is shown that telegrapher’s equations of these

nonuniform coupled transmission lines can be solved ex-

actly using Bessel. functions of fractional order. Then, by

decomposing chain matrices of these circuits, we can show

that equivalent circuits of these nonuniform coupled

transmission lines are expressed as cascade connections of

lumped reactance elements, uncoupled uniform transmis-

sion lines and ideal transformers. Two-port equivalent

circuits of parabolic tapered coupled transmission lines

with appropriate terminal conditions imposed are also

presented by using equivalent representations shown in this

paper.

II. EXACT SOLUTIONS OF TELEGRAPHER’S

ECNJATIONS

The 2 n th-order binomial form coupled transmission lines
(BFCTL) are nonuniform coupled transmission lines whose

self and mutual characteristic admittance distributions are
given as the binomial form (ax+ b) *2”, where x is the

distance along the line, a and b are constants and n is an

integer. The Iossless 2n th-order BFCTL above a ground
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Fig. 1. Two-wire binomial form coupled transmission lines above a
ground plane.

plane, shown in Fig. 1, may be described by the following ~b is the phase constant for the balanced mode and is given

equations:

1~~~1=[~~-[~1 ‘~][~~1~] ‘1) ~ere

~b=~~=ufi==~ (5)

Lb=Lll i-L21 –2L12

l:;;;]=@(l+irn[:: ::][%](2) 1 “)

C,*C22 – Cfz

Cb = C,l +C22 +2C,2

p is permeability

where and

~.(x) the voltage across ith transmission line at x=x; c is permittivity.

l,(x) the current in i th transmission line at x=x; General solutions of (4) are obtained by

vb(y)=K1.y-(2”- 1)/2.J
(2n-1)/2(PY)+(– l)n”K2.y-(2”-1)/2.J -(2n-1)/2(BY)] (-l\

~b(y)=~3.y(2~+o/2.J
(2n+l)/2(PY)–(– l)n”K4”y(2”+’)/2”J -(2n+,)/2(BY) ~

\ 1)

L,,
L,J

C,i
c,,

u
k

self inductance of i th transmission” line at x= O;

mutual inductance between i th and jth transmis-

sion lines at x= O;

self capacitance of i th transmission line at x= O;

mutual capacitance between i th and j th

transmission lines at x=O (i, j= 1, 2);

the angular frequency;

constant.

A. The Balanced Mode (Odd Mode)

The voltage Vb(x) and the current IJx) for the balanced

mode (odd mode) are expressed as follows:

vb(x)=v,(x)–v2(x) 1Ib(x)=I1(x)= –12(X) “
(3)

We can obtain the following telegrapher’s equations using

(l), (2), and (3):

d2 2n
—.~vb(x)+p; .vb(x)=o‘v~(x)+ k+x dx

dx 2

dz 2n

I

. (4)

—.~l(x)+p:.zb(x)=o—~&x)- k+x d~ b
dx2

where

y=k+x (8)

&+ 1)/Z[13Y) = Bessel function of fractional order

and Ki (i= 1– 4) are constants. Therefore, a chain matrix

for the balanced mode is given as follows:

[!$11=[5%Ni?l “)/lb=TO’l{J-(2n-1)/2 (Bk)”z2.+,),2(B(k+~))

+42n-,)/,(Bk)”J-(2 n+,,/2(B(k+~))} (lo)

‘b= ‘j+ o;{ J-(2n-,)/z(Bk)”&l) /2( P(k+l))

–<2m_,),2(~k).J_ (2~_,)/,(~(k+l))} (11)

‘Cb =jY~. ToM{J_
(2.+ 1)/2@k) “+2.+ ,),,(~(k+~))

-42n+,),2(Pk)-J-(2 n+,)/2(B(k+~))} (12)

D~ = ~ {J-(2 n+,),2(Pk)”+2n- 1)/2(~(k+z))

++2n+,),2 (Bk)J-(2n-,)/2(Mk+ O)} (13)
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where i C. The Chain Matrix of the Four-Port Network

T=(–l)n WTq (,,)

~= ki-1 “

(–) k

1is the line length

and Y~ is the characteristic admittance

mode at x=O.

ryb= g=& Y11Y22 –Y1’2

L,, +L2~–2L12 = y*~+y22 +2y,2
(15)

b

where

J
for the balanced

.

Y1l self characteristic admittance of i th transmission

line at x=O; and

yij mutual characteristic admittance between i th and

jth transmission lines at x =0 (i, j= 1,2).

B. The Unbalanced Mode (Even Mode)

The voltage VU(X) and the current lU(X) for the un-

balanced mode (even mode) are expressed as follows:

VJX)=V1(X)=V2 (X) 1IU(X)=I,(X)+12(X) “
(16)

Substituting (16) in (1) and (2), we get

+u(x)=ju L
; 2nIu(x)

()
1+X

1
(17)

( ‘)2nw)J–-&u(x) =j@”cu”1+ ~

where

L,lLZZ –L~z

1

‘“= L,, +L22–2L,2 .

Cu=C,, +C22 +2c,~

(18)

The telegrapher’s equation for the unbalanced mode is the

same expression as (4) with the b subscripts changed to u.

The phase constant /3Ufor the unbalanced mode is defined

by

&=@@%fiE& (19)

Accordingly, the chain matrix for the unbalanced mode is
given as follows:

where A., 15U,C., and !EJUare identical to (10), (11), (12),

and (13), respectively, with the b subscripts changed to u.

The characteristic admittance YU for the unbalanced mode

at x = O is given by

r

yu= -5=1 (c,, +c22+2c,2)=y,, +y22+2y,2.

‘u &

(21)

The voltage ~.and the current 1, ( i = 1,2) of the four-port

network shown in Fig. 1 are expressed as follows:

where

8

II :][1v, 1 1+8 vu

V-2=1 1 Vb
(22)

—
1+8

1
I, 11

IIZ ][1_1+8
12–8 1;

1+8 ‘1

~– VI – 12

V2 I, “

(23)

(24)

By substituting (9) and (20) in (22) and (23), the chain

matrix [F] of the four-port network is obtained as follows:

[Ill

v,(o) ‘ v,(1)

V2(1)
:[:; =[~1 ~,(1) (25)

I:(O) Iz(l)

II
A, I O lBII 1512

[F]= ~ol, ‘$ :2’ ‘; (26)

c’, C22 0“ D,,

A,, = T“M{J-(2.-1)/2 (Bk)”+2n+,),2(B( k+~))

+~2n–1)/2(Bk)”J–(2n+l)/2(P(k+l))} (27)

~r~ = –j Y,, ‘{J-(2.-,),2(M)
Y,, Y22 —yf2 M

“+2.-,)/2(P(k+z))–+2n-,)/2(Bk)

“J-(2.-l),z(P(k+l))} (r,s=l,z) (28)

“J&+, ),2(lw+0)

~2n+,),2(Pk)–J

.J_ (z.+l~/z(B(k+Z))} (r, ~=l,2) (29)

DI, = ; {J_(2n+,)/@)J&-1)/z(P(k+z))

+42n+,),2(Bk)”J-(2n-l),2(B(k+z))}. (30)

Thomson’s polynomial H.(z) is defined by

%(Z)= U.(Z) +Gn(Z)=Z
““[4+)+431 ’31)
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()1Un—= $. q(z)
z

() 1
gn ~ ‘_&- G~(z) “

(33)

Bessel functions of fractional order are expressed using

modified Thomson’s polynomial as

r@k
— “+,n+,),,(~k)=( ~)””gn(+ )2

.sin(/_?k)+(j)”+l

()
1 .cos(~k)Vun —
z

.sin(~k)+(–j)”

“g.
()

~ .cos(/3k)

where

z=j~k.

(34)

(35)

By substituting (34) in (27)–(30), we can decompose the

chain matrix of (26) as follows:

[F]=[F, ].[F2]. [F3]. [F4] (36)

where

1gel (:). [1] un_, (+).[Y]-l

[F,]=

() I

(iz=odd)

g. :
()

[Y] Un : .[1]

(37)

and

[

Un–, (:). [1] gn_, (:). [Y]-’
[F,]=

() () 1

(n=even)
: [Y] gn : .[1]Un —

(38)

[1] is the 2 X 2 identity matrix, and

[y]= [ :;2, –Y12

Y22 1 (39)

[F2]=
[

COS(P1).[1] jsin(@). [Y]-l 1 (40)
jsin(@). [Y] Cos(pl). [1]

I

Un
()

; -[I] —Un–,
()

; .[y]-l

[F,]=

– g. ()
$ [Y] &T.-l

()
: [I]

I

(n=odd) (41)

@

(a) (b)

Fig. 2. Lumped inductance coupled circuits.

Y1l-ylz Y1l-Y12

h ““”7+ A+’

Fig. 3. The equivalent circuit of the second-order binomiaf form coupled
transmission lines.

[

(); .[1] ()1% –gn–, --j “[Y]–’
[F,]=

—Un
()

$ [Y] un_,
()

; [I] 1
where

and

[F,]=

111.

(n=even) (42)

z’=j~(k+l) (43)

Moo 01

Of’kfoo
o I() ~-l (j .

(44)

000 ~-l

EQUIVALENT CIRCUITS

Chain matrix [ Fz] is the one for uniform coupled trans-

mission lines, and the equivalent circuit of uniform coupled

transmission lines is expressable by uncoupled transmiss-

ion lines [10]. Chain matrix [ FA] expresses an ideal trans-

former bank. If chain matrices [F, ] and [Fq] express ap-

propriate circuits, we can obtain an equivalent circuit with

cascade structure for BFCTL. We define a taper coefficient

A and a transformation ratio m of BFCTL as follows:

h =k/1 (45)

m=(l+h)/h. (46)

In the case of n= 1, chain matrices (37) and (41) are

expressed by
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Binomial form coupled transmission lines, the dual
shown in Fig. 1.

ORIGINAL CIRCUIT

of the circuit

TABLE I
TWO-PORT EQUIVALENT CIRCUITSOFTHENETWORK SHOWNIN

FIG. 1

EQUIVALENTCIRCUIT

ti

@=-yJ

ti

[

[I] [0]
[~31= _~e

~ &.[Y] [1]1
where [0] is the 2 X 2 zero matrix, and

s =j~l.

Yll Yll.—

‘=

rw
Y1l-Y12

c1

Yl~-Y~*

h //1// // { / / ///// h

@

/ / / / / / / / //// /// / / / ///{///-

(48)

(49)

The circuits realized from (47) and (48) are shown in Figs.

2(a) and (b), respectively. Therefore, the equivalent circuit

of BFCTL in the case of n = 1 (namely, parabolic tapered

coupled transmission lines) becomes the mixed lumped and

distributed circuit shown in Fig. 3. Fig. 3 represents a unit

element of length 1, and the short-circuited stub is also of

length 1.
In general, an equivalent circuit for BFCTL for any odd

n becomes the circuit shown in Fig. 4(a), where the char-

acteristic impedance Zil is given by

Y,,
z= (i, j=l,2). (50)

‘J Y11Y22 –Y?2

An equivalent circuit for BFCTL for any even n is shown

in Fig. 4(b).

The BFCTL shown in Fig. 5 is the dual of the circuit

shown in Fig. 1. In the same manner as the derivations

above, we can obtain equivalent circuits of these BFCTL as

mixed lumped and distributed circuits. These are shown in

Figs. 6(a) and (b), where element values of the circuit

shown in Fig. 6(a) are given by those of the circuit shown

in Fig. 4(b), and values of the circuit shown in Fig. 6(b) are

given by those of the circuit shown in Fig. 4(a). The line

length of the open-circuited stub equals 1.

IV. EXAMPLES OF TWO-PORT NETWORK

Several two-port equivalent circuits of BFCTL can be

derived, in the case of n= 1, by using equivalent represen-

tations of Fig. 3 and Fig. 6(a). The first boundary condi-

tion is that two of the terminal voltages be zero. Two-port

equivalent circuits from the network shown in Fig. 1 are

introduced in Table I. The second boundary condition is

that two of the terminal currents be zero. Two-port equiva-

lent circuits of the network shown in Fig. 5 are introduced
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Fig. 6. Impedance tyye equivalent circuits of the 2 rrth-order binomial
form coupled transmission lines. (a) n= odd. (b) n= even.
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TABLE II

TWO-PORT EQUIVALENT CIRCUITS OF THE NETWORX SHOWN IN FIG. 5

ORIGINAL CIRCUIT EQUIVALENT CIRCUIT

@:ll;’Tl JT;120@
‘11-212 ’12 ‘22-=12

h, =&2~ h
‘T

/ /// //////// ////////

+LJz~_ , -~
’12

////,-//////// //////// ///[

in Table II. Circuits shown in Table I-1 and Table II-1 are

equivalent circuits of binomial form nonuniform transmis- [3]
sion lines whose characteristic admittance distributions are

Y(x)=y,, “(l+W
1

Y(x)= Zl,”i--)1X2

h“l

[4]

(51)

[5]

(52) [6]

[7]

respectively [18].

From Tables I and II, it can be seen that two-port [8]
BFCTL’S are applicable to various microwave components.

It is hoped that the equivalent circuits described here may

lead to easier design methods for these microwave compo-
[9]

nents. [10]

V. CONCLUSION [11]

Equivalent circuits of a class of nonuniform coupled

transmission lines have been derived. Telegrapher’s equa- [I 2]

tions of the 2n th-order BFCTL can be solved exactly using

Bessel functions of fractional order. Then, by decomposing ~131

chain matrices of these networks, equivalent circuits of

BFCTL are represented as mixed lumped and distributed

circuits consisting of cascade connections of lumped reac- ~141

tance elements, uncoupled uniform transmission lines and

ideal transformers. Therefore, BFCTL can be treated in the [151

same manner as uniform coupled transmission lines, and

potential applications using BFCTL may be expected. Fi-

nally, several two-port equivalent circuits of parabolic [161

tapered coupled transmission lines with simple terminal

conditions imposed are presented. [17]
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