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eigenvalues, each corresponding to a propagating imped-
ance mode of the multiconductor line.
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Equivalent Circuits of Binomial Form
Nonuniform Coupled Transmission Lines

KUNIKATSU KOBAYASHI, YOSHIAKI NEMOTO, MEMBER IEEE, RISABURO SATO, FELLOW IEEE

Abstract— Equivalent circuits of nonuniform coupled transmission lines
whose self and mutual characteristic admittance distributions obey binomial
form are presented. Telegrapher’s equations of these nonuniform coupled
transmission lines can be solved exactly using Bessel functions of fractional
order. By decomposing the chain matrix, it is shown that equivalent circuits
of these nonuniform coupled transmission lines consist of cascade connec-
tions of lumped reactance elements, uncoupled uniform transmission lines
and ideal transformers.

I. INTRODUCTION

OUPLED TRANSMISSION lines are very im-

portant in microwave network theory. They are used
extensively in all types of microwave components: filters,
couplers, matching sections, and equalizers. Uniform cou-
pled transmission lines have been described by many
authors [1]-[15], and it is well known that equivalent
representations of coupled transmission lines are very sig-
nificant techniques in the analysis and synthesis. Nonuni-
form coupled transmission lines show good transmission
responses and may also be important in microwave net-
work theory. In general, the analysis of nonuniform cou-
pled transmission lines becomes hard work because of
difficulty of finding exact network functions. The analysis
of particular nonuniform coupled transmission lines, for

Manuscript received November 25, 1980; revised March 2, 1981.

K. Kobayashi is with the Department of Electrical Engineering, Faculty
of Engineering, Yamagata University, Yonezawa 992, Japan.

Y. Nemoto and R. Sato are with the Department of Information
Science, Faculty of Engineering, Tohoku University, Sendai 980, Japan.

instance, exponential or hyperbolic tapered coupled trans-
mission lines, have been reported [16], [17], but useful
equivalent representations have not been obtained.

In this paper, we investigate equivalent circuits of non-
uniform coupled transmission lines whose self and mutual
characteristic admittance distributions obey binomial form.
First, it is shown that telegrapher’s equations of these
nonuniform coupled transmission lines can be solved ex-
actly using Bessel. functions of fractional order. Then, by
decomposing chain matrices of these circuits, we can show
that equivalent circuits of these nonuniform coupled
transmission lines are expressed as cascade connections of
lumped reactance elements, uncoupled uniform transmis-
sion lines and ideal transformers. Two-port equivalent
circuits of parabolic tapered coupled transmission lines
with appropriate terminal conditions imposed are also
presented by using equivalent representations shown in this

paper.

II. EXxACT SOLUTIONS OF TELEGRAPHER’S
EQUATIONS

The 2nth-order binomial form coupled transmission lines
(BFCTL) are nonuniform coupled transmission lines whose
self and mutual characteristic admittance distributions are
given as the binomial form (ax+5b)**", where x is the
distance along the line, a and b are constants and »n is an
integer. The lossless 2nth-order BFCTL above a ground
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Fig. 1. Two-wire binomial form coupled transmission lines above a
ground plane.

plane, shown in Fig. 1, may be described by the following B, is the phase constant for the balanced mode and is given

equa_xtibns: by
d - i ) _
— 2 (%) __Je Ly Lp][4() 0 B, =w/L,C, =wipc =B 5)
_‘—d‘V(x) - (1+£)2n L21 Lzz _IZ(X) where 7
| dx 2 k L,=L,+L,,—2L,,
& ] C,,Cy, — C2 6
dxll(x) . X 2n C]] C12 Vl(x) Cb:__%z.z—lz__ ( )
d —Jw(l-i-ﬁ) e ¢ ¥(x) (2) Cy +Cy +2C),
21 22 2
! Elz(x) - p is permeability

where and

Vi(x) the voltage across ith transmission line at x=x; €18 permituvity.
I(x) the current in ith transmission line at x=x; General solutions of (4) are obtained by

Vb(y):Kl 'y‘(zn_l)/z'J(zn—l)/z(ﬂ)’)+(— l)n'Kz')’_(2"_1)/2‘]~(2n—1)/2( By)
Ib(Y):Ks‘y(2"+1)/2'-f(2n+1)/2(ﬁ)")_(“ l)n'K4')’(2"+1)/2'J—(2n+1)/2(,3)’)

()

L, self inductance of ith transmission line at x=0; where
L, mutual inductance between /th and jth transmis- y=k+x (8)
sion lines at x=0; . .
C,  self capacitance of ith transmission line at x=0; Jen+1,/2(By) = Bessel function of fractional order
C, mutual capacitance between ith and jth . . .
4 transmission lines at x=0 (i, j=1,2); and K, (i=1-4) are constants. Therefore, a chain matrix
@ the angular frequency; ’ o for the balanced mode is given as follows:
k constant.
AL [2 o
5,00) ] |[C, D,|| L(!)
A. The Balanced Mode (Odd Mode)
The voltage V,(x) and the current I,(x) for the balanced Ay =T-M{J_;,_1),(Bk) T+ 2 B(k+1))
mode (odd mode) are expressed as follows:
+J(2n—1)/2( :Bk) 'J~(2n+1)/2(:3(k+l))} (10)
Vo(x)=Vi(x) = Va(x) _ 1T
L(x)=IL(x)=—L(x)[" (3) Bb__J"Y;'ﬁ{J—(zn—l)/z(ﬂk)'-f(zn—l)/z(ﬁ(k+l))
~Jyn_ k) J_ i, k+! 11
We can obtain the following telegrapher’s equations using @n=hy/ k) @n=1/ A B( )} (1)
(1)’ (2)’ and Q): Cb :ij‘ T'M{J—(2n+1)/2(:3k)‘J(2n+1)/2(13(k+l))
d? _-,(2n+1)/2(:3k)'J—(2n+1)/2(.3(k+1))} (12)

2n  d
———Vb(x)'f‘—”"d_Vb(x)"'Bbz'Vb(x):O T
dx? k+x dx . (4 Db:Kl—{J—(zn+1)/2(:Bk)"](Zn—l)/Z(B(k+l))

d .\ 2n d 2 ()
() s g B TR (%) =0 Flamsn s BE)T-gnon n(BHD)) (13)

dx
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=y [ [FED

u=()

[ is the line length

where

(14)

and Y, is the characteristic admittance for the balanced
mode at x=0.

Y. = [} - \/l—’*_‘_ __Jurn —rh (15)
b L, LytLy—2L, Y11f|'J’22+2J’12
where :

v, self characteristic admittance of ith transmission
line at x=0; and
y;; mutual characteristic admittance between ith and
Jjth transmission lines at x=0 (i, j=1,2).
B. The Unbalanced Mode (Even Mode)

The voltage V,(x) and the current I, (x) for the un-
balanced mode (even mode) are expressed as follows:

Vx)=V(x)= Vz(x)}
I (x)=I(x)+1,(x)
Substituting (16) in (1) and (2), we get

(16)

(17)

where

LiLy _L%z
L+Ly—2L,,
C,=C,+Cy+2C,

L,=

(18)

The telegrapher’s equation for the unbalanced mode is the
same expression as (4) with the b subscripts changed to u.
The phase constant B, for the unbalanced mode is defined
by

- B,=w/L,C, (19)

Accordingly, the chain matrix for the unbalanced mode is
given as follows:

s Au Bu Vu(l)

|, D] L)

v.(0)

1,(0)
where A , B, C , and D, are identical to (10), (11), (12),
and (13), respectively, with the b subscripts changed to u.
The characteristic admittance Y, for the unbalanced mode
at x=0 is given by

=wype =8

(20)

1
=—(C; +Cy +2CL) =y tyn +2)1.
u ,lLC

(21)
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C. The Chain Matrix of the Four-Port Network

The voltage V,.and the current I, (i=1,2) of the four-port
network shown in Fig. 1 are expressed as follows:

1 1 —8 r
v 1+6 Vu]
= 22
[Vz_ 1w (22)
| 1+46 |
- 1_
Il _ 1+8 Iu
[12— R I] ®)
| 1+6 ]
where
Vv, I
-3 e

By substituting (9) and (20) in (22) and (23), the chain
matrix [ F] of the four-port network is obtained as follows:

no]  [no
IR E A
L,(0) L(1)
A, 0 B, B,
e, on oy 0| @9
C, C, 0 D,
Ay =T-M{J 1) BE) sy 1y o BKFD))
+Tan- 12 BK) Ty o BUEHD)} (27)
Brs:—jmii‘—y';M{J @n—1,2(BK)
-Ja,,_Wz(ﬁ(kﬂ))—Jan-m(ﬁm
J_an—1,2(B(k+1))} (r,s=1,2) (28)
C,, =j(—= 1)y T-M{J_3 11, 2( BK)
Jams ol BUEHD))
~Jims vy BK)
T_guenp(B+D)}  (rs=12)  (29)
By = (oo BR) Ty BUE+D)
s 12 BE) Ty B(EHD) ). (30)

Thomson’s polynomial H,(z) is defined by
H(2)=U)+G()=="[u (1) +g1]] G

where
e_z _U(2)
e ' (2)

tanh(z)= (32)
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and
(33)

Bessel functions of fractional order are expressed using
modified Thomson’s polynomial as

\/—77/23—k J(2n+1)/2(18k) (l) gn( 1 )

ssin(Bk)+()"

u,,(%)-cos(,Bk)
WJ (2n+l)/2(Bk) (- )n+l un(%)

sin(Bk)+(—j)"

g 3 ) <05 (80)

o (34)

where
z=jBk. (35)

By substituting (34) in (27)-(30), we can decompose the
chain matrix of (26) as follows:

[FI=[R][R]-[E][F] (36)
where
1 1 -
[F]= o (;)[l] un—l(Z)'[Y] (n=0dd)
afz) 07 wfz)ul
(37)
and
N e A HSe I
w(7) 1 g (1) 0
(38)
[7]is the 2X2 identity matrix, and
=] 2y, ] 9
s e | e

wl )10 = (F) T

8o 27 11]

e &) 7]
(n=o0dd) (41)
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Fig. 2. Lumped inductance coupled circuits.
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Fig. 3. The equivalent circuit of the second-order binomial form coupled

transmission lines.
1 1 _
gn(y)'[I] gn_l(?)'[Y] !
[R1=| 7 1
—u 7)) ()0
(n=even) (42)
where
z’=j,8(k+l) (43)
and
M 0 0 0
0 M 0 0
0 0 0 M
III. EQUIVALENT CIRCUITS

Chain matrix [F,] is the one for uniform coupled trans-
mission lines, and the equivalent circuit of uniform coupled
transmission lines is expressable by uncoupled transmis-
sion lines [10]. Chain matrix [ F,] expresses an ideal trans-
former bank. If chain matrices [F,] and [F,] express ap-
propriate circuits, we can obtain an equivalent circuit with
cascade structure for BFECTL. We define a taper coefficient
A and a transformation ratio m of BFCTL as follows:

h=k/I
m=(1+h)/h.

(45)
(46)

In the case of n=1, chain matrices (37) and (41) are
expressed by

(71 [o]
[A]= %'%_[Y] ] (47)
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Fig. 5. Binomial form coupled transmission lines, the dual of the circuit
shown in Fig. 1.
TABLE1
Two-PORT EQUIVALENT CIRCUITS OF THE NETWORK SHOWN IN
FiG. 1
ORIGINAL CIRCUIT EQUIVALENT CIRCUIT
1
2
3
and An equivalent circuit for BFCTL for any even # is shown
[1] [0] in Fig. 4(b).
El= (48) The BFCTL shown in Fig. 5 is the dual of the circuit
[A]= 11 1r] [1] shown in Fig. 1. In the same manner as the derivations
s 1+h above, we can obtain equivalent circuits of these BFCTL as
. . mixed lumped and distributed circuits. Th T i
where [0] is the 2 X2 zero matrix, and . P ts. These are shovyn m
. Figs. 6(a) and (b), where element values of the circuit
s=JBl. (49)  shown in Fig. 6(a) are given by those of the circuit shown

The circuits realized from (47) and (48) are shown in Figs.
2(a) and (b), respectively. Therefore, the equivalent circuit
of BFCTL in the case of n=1 (namely, parabolic tapered
coupled transmission lines) becomes the mixed lumped and
distributed circuit shown in Fig. 3. Fig. 3 represents a unit
element of length /, and the short-circuited stub is also of
length /.

In general, an equivalent circuit for BFCTL for any odd
n becomes the circuit shown in Fig. 4(a), where the char-
acteristic impedance z,, is given by

S (i, j=1,2).

yE T (50)
! Yy ‘J’122

z

in Fig. 4(b), and values of the circuit shown in Fig, 6(b) are
given by those of the circuit shown in Fig. 4(a). The line
length of the open-circuited stub equals /.

IV. ExamPLES OF TWO-PORT NETWORK

Several two-port equivalent circuits of BFCTL can be
derived, in the case of n=1, by using equivalent represen-
tations of Fig. 3 and Fig. 6(a). The first boundary condi-
tion is that two of the terminal voltages be zero. Two-port
equivalent circuits from the network shown in Fig. 1 are
introduced in Table I. The second boundary condition is
that two of the terminal currents be zero. Two-port equiva-
lent circuits of the network shown in Fig. 5 are introduced
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Fig. 6. Impedance type equivalent circuits of the 2nth-order binomial
form coupled transmission lines. (a) n=odd. (b) n=even.
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TABLE II
Two-PORT EQUIVALENT CIRCUITS OF THE NETWORK SHOWN IN FIG. 5
ORIGINAL CIRCUIT EQUIVALENT CIRCUIT
@ " @ 11 11
“h . 1+ 1lim
1 ® @t 1@
11
\ @
T 777 777777777777 777
@ o——/ @ 12 | | I l 22712
21 ® o ® 11 *12 *12 %237%1
1z r‘ h
////////////////////
@ — @ 2117712 2927212
€ % 1+h 1l:m
3 ‘-oJ L————o—] l—o—|

in Table II. Circuits shown in Table I-1 and Table II-1 are
equivalent circuits of binomial form nonuniform transmis-
sion lines whose characteristic admittance distributions are

Y= (1433 ) (51
Y(x)= LT (52)
(1 37]

respectively [18].

From Tables I and II, it can be seen that two-port
BFCTL’s are applicable to various microwave components.
It is hoped that the equivalent circuits described here may
lead to easier design methods for these microwave compo-
nents.

V. CONCLUSION

Equivalent circuits of a class of nonuniform coupled
transmission lines have been derived. Telegrapher’s equa-
tions of the 2nth-order BFCTL can be solved exactly using
Bessel functions of fractional order. Then, by decomposing
chain matrices of these networks, equivalent circuits of
BFCTL are represented as mixed lumped and distributed
circuits consisting of cascade connections of lumped reac-
tance elements, uncoupled uniform transmission lines and
ideal transformers. Therefore, BFCTL can be treated in the
same manner as uniform coupled transmission lines, and
potential applications using BFCTL may be expected. Fi-
nally, several two-port equivalent circuits of parabolic
tapered coupled transmission lines with simple terminal
conditions imposed are presented.
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